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1 Project Overview 

1.1 Introduction 

Brain-computer interface (BCI) systems allow direct communication between the brain and a 

computer, enabling one to interface with a computer system through brain activities alone 

without physical interaction. Electroencephalography (EEG) is a popular non-invasive method 

of recording brain activity by electrodes placed on the subject’s scalp. 

Our project aims to play a robot racing game consisting of four actions (running, jumping, 

rotating, and sliding) corresponding to four different EEG patterns. This report introduces the 

design and implementation of our BCI system to control the racing game’s virtual character. 

1.2 Project Design 

The subject is told to correlate each game action with a motion (calming down, holding a cup 

with the left hand, holding a cup with the right hand, and jumping) to generate sensorimotor 

stimulation. EEG signals are collected using an EEG cap. Data collected are pre-processed 

before classification. The classifier determines the motor imagery of sensorimotor action in 

each segment and translates it back into an in-game action. The command is then given to the 

game, and the robot character does the corresponding action. 

 

Figure 1 

Picture of subject playing the robot game using EEG 

 

1.3 Design Rationale 

In our BCI system design, EEG signal is collected at C3 and C4 by the international 10-20 

system (See Figure 2).  These two regions were chosen since they have been proven to be the 

optimal locations to collect signals related to motor imagery states [1]. C3 and C4 signals 

correspond to movements on the right side of the body and those on the left, respectively. 
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Reference electrodes are located on the earlobes of the subject, i.e. A1 and A2, by the 10-20 

system (See Figure 2). 

 

Figure 2 

The international 10-20 system with 19 active electrodes; used electrodes highlighted 

 

2 Classifier Training 

2.1 Raw EEG Data Acquisition 

2.1.1 Preparation 

1. The EEG cap is worn on the subject. The position is adjusted by measuring the subject’s 

head’s centre position (Cz). Cz is located by intersecting the mid-frontal plane (defined 

by two vertical lines perpendicular to the ground plane extending from the tragus of 

both ears), the mid-sagittal plane, and the vertex of the subject’s head.  

2. The subject’s earlobes are cleansed with an exfoliating gel and tissue paper to reduce 

electrical impedance between the scalp and the electrodes by removing dead skill cells. 

3. The cavities of the cup-shaped reference electrodes are filled with conductive paste and 

attached to the subject’s earlobes. 

4. The subject’s hair is moved using a small-gauge needle to expose the scalp at C3 and 

C4. 

5. Floating electrodes are placed at C3 and C4. 

6. Liquid conductive gel is injected in and around the electrodes using the small-gauge 

needle to improve conduction and reduce input impedance. 

7. Tape is used to secure the electrodes. 

8. The input impedance is checked using a MATLAB script (check_impedance.m). The 

setup is adjusted until the impedance of both channels is 5kΩ or lower. 
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2.1.2 Data Acquisition 

We used a training data collection script to acquire training data for the classifier. The training 

was split into 40 segments, with ten segments for each sensorimotor action in a random order. 

The subject was instructed to imagine each action (calming down, holding a cup with the left 

hand, holding a cup with the right hand, and jumping) for six seconds when prompted. The 

script automatically collects the EEG signals from both channels at 256 Hz for the entire 

acquisition duration and labels it with the segment action. 

2.2 EEG Data Pre-processing 

2.2.1 Data Segmentation 

The raw EEG data was split into segments using the given segment timestamps. Each segment 

is six seconds long. To remove potential time-related biases and to augment the data, the 

segments were further divided into smaller sub-segments of two seconds with an offset of 

0.0625 seconds per. 

 

Figure 3 

Data segmentation process illustration 

 

Below is the code for sub-segmenting the EEG data — excerpt from processEEG.m. 

 

In lines 2 and 3, the start and end sample point indices are calculated. 

In line 4, the extracted sub-segment is added to a cell array for further processing. 
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Below are the constant values used in the code above — excerpt from processEEG.m. 

 

 

2.2.2 Feature Extraction 

For each sub-segment, the band powers of the sub-α bands (0-8 Hz), α-band (8-12 Hz), high-α 

band (10-13 Hz), low-β band (12-20 Hz), and β-band (13-30 Hz) for both channels are 

calculated. Ten frequency-domain features are extracted from each sub-segment. 

The α- and low-β bands are selected since they coincide with the sensorimotor-related μ-rhythm 

and other sensorimotor oscillations; these two bands make up the sensorimotor rhythms. 

Frequencies higher than 30 Hz are not used since they are highly susceptible to noise from the 

power source. Other in-between frequency bands are also included to give the classifier more 

context. 

Below is the code for extracting the features — excerpt from processEEG.m. 

 

In lines 4 and 6, the band power of each frequency band is computed. 

 

Below are the constant values used in the code above — excerpt from main.m. 
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Figure 4 

Channel band powers for each featured band 

 

2.3 Classification Algorithm 

2.3.1 Model Choosing 

We attempted to employ many different families of models to differentiate the classes and 

chose the one with the best performance. Empirically, the 𝑘-nearest neighbour (KNN) method 

performed well most consistently with 30-40% accuracy on unseen data.  

KNN is a non-parametric method which classifies an object by a majority vote of its neighbours 

based on comparing testing data with training data; hence, the object is assigned to the class 

most common among its 𝑘 nearest neighbours [2]. 𝑘 is the number of nearest neighbours to be 

considered in selecting the class, where 𝑘 is a positive integer [3]. Since the band power of the 

same motor imagery task is expected to be similar, the data points of the training data of the 

same task form a cluster, forming a class.  
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Below is the code for training and evaluating a model — excerpt from main.m. 

(Note: Similar code is used for evaluating other model families.) 

 

In line 3, the KNN model is trained. 

In line 10, the KNN is asked to predict the classes of untrained data. 

In line 17, the trained model was exported and saved for future use. 

 

During the data acquisition phase in 2.1.2 above, we collected a total of four sets of data. 

However, we found that since the input impedances and other environmental factors vary 

significantly between each trial, it is challenging for the classifier to identify the classes 

correctly. Empirically, we found that using the data collected in trial three as training data 

showed the best performance in unseen data. 

(Note: We also attempted to use a neural network to classify the data; however, it was not fast 

enough to train and compute a neural network in MATLAB.) 

2.3.2 Model Tuning 

In KNN, using a moderate neighbour number to smooth out the boundaries is generally 

advisable [4]. However, we found that increasing the neighbour number empirically worsened 

the accuracy since the 𝑘 value reduces noise and increases error rate. The final model we used 

has its neighbour number kept as one. 
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3 Game Playing 

3.1 Raw EEG Data Acquisition 

3.1.1 Preparation 

Preparation steps are identical to those shown in 2.1.1 above. 

3.1.2 Data Acquisition 

An accompanying MATLAB script (Game_start.m) measures the EEG signals in real-time 

when playing the game. The script acquires the data from both channels at 256 Hz and calls 

the classifier function in one-second intervals. 

3.2 EEG Data Pre-processing 

3.2.1 Data Concatenation 

Since the classifier requires data acquired over at least two seconds as input (See 2.2.1 above) 

while the script is called every second, the script stores the data obtained in the last function 

call. It then concatenates the latest data to construct data spanning two seconds. 

Below is the code for extracting the features — excerpt from your_classifier.m. 

 

In line 4, a global variable is created to store the data acquired in this function call. 

In line 12, the latest data is concatenated with data from the previous function call. 

 

3.2.2 Feature Extraction 

Features are extracted in the same manner as detailed in 2.2.2 above. 

3.3 Classifier Prediction 

The extracted features are formatted and given to the classifier for prediction. After predicting 

a sensorimotor action class, the MATLAB script (your_classifier.m) translates it into a 

game state to instruct the robot to perform different actions. Since the classifier interprets the 
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classes differently from the robot game, we must first pass the prediction result through an 

interpreter to translate it into a suitable format. 

Below is the code for interpreting the results — excerpt from your_classifier.m. 

 

In line 7, the classifier issues a prediction result based on the input features. 

In lines 10-19, the result is mapped from the classifier format to the robot game one. 

 

4 Results 

Tabulated below are the game results. 

Run Time (seconds) 

1 109 

2 111 

3 117 

4 118 

5 121 

Average of the best three 112 
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5 Encountered Problems 

5.1 Problem 1: High Input Impedance 

5.1.1 Problem Description 

There was high input impedance from the electrodes during preparation. High impedance 

introduces several challenges in EEG data acquisition, such as increased noise and signal 

attenuation, decreased signal-to-noise ratio, and reduced spatial resolution. These challenges 

led to poor signal quality, negatively affecting the system’s performance. 

5.1.2 Solution 

To mitigate the negative impacts, proper electrode preparation was practised. We improved the 

skin-electrode contact and reduced the input impedance by skin cleansing and exfoliation using 

conductive gel and scrub. Skin cleansing and exfoliation remove the outer layer of dead skin 

cells, oils, or other contaminants on the skin surface. It promotes better contact between the 

electrodes and the skin as barriers and other hindering factors have been eliminated. 

Conductive gel further reduces the input impedance by filling the gap between the electrodes 

and the skin and enhancing electrical contact. The subject’s hair is washed before each data 

acquisition and competition to remove the oils and dust on the head.   

Besides using only tape, we filled the gaps in the wells of the EEG cap with crumbled tissue 

paper pieces to secure the electrodes further. The anchorage provided limits the movement of 

the electrodes, therefore minimising the impedance change by sudden motions of the subject. 

After practising these measures, the input impedance from the electrodes is significantly 

reduced from ~30kΩ, to ~15kΩ, even ≤ 5kΩ in a vast majority of situation. 

5.2 Problem 2: Difficulty in Concentration for Subject 

5.2.1 Problem Description 

In practice, the subject reflected that it is challenging to vividly, quickly, and immediately 

imagine the prompted action. The resultant sensorimotor signals were weak, indistinct, and 

inconsistent, which hindered the classifier’s performance. Furthermore, it was non-trivial to 

imagine the same motion every time. This introduced a lot of noise and variations in the training 

data. 
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5.2.2 Solution 

To combat the trigger latency problem, we split the raw EEG data into sub-segments (See 2.2.1 

above) such that the sub-segments within the latency period account for only a tiny proportion 

of the training dataset. 

To combat the motion inconsistency problem, we instructed the subject to imagine a more 

repeatable motion (shaking his left hand, rotating his right arm in a circular motion) instead of 

imagining the suggested serialised motions (grabbing the cup with the left or right hand). This 

approach produced more consistent and robust signals for analysis. 
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